

Sample Question

MATHEMATICS

CMA-104: SEMESTER-II

(Real Analysis)

Full Marks: 80
Pass Marks: 35

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose and rewrite the correct answer for each of the following questions: $1 \times 3 = 3$
 - (a) Which of the following is an open set?
 - (i) $(0,1) \cup [-1,0)$
 - (ii) $[0,1) \cup (-1,0]$
 - (iii) $(0,1] \cup [-1,0)$
 - (iv) $(0,1] \cup (-1,0)$
 - (b) For the sequence $\{u_n\}$ where $u_n = \begin{cases} 3, & \text{if } n=3k \\ -5, & \text{if } n=3k-1, k \geq 1 \\ 4, & \text{if } n=3k-2 \end{cases}$. The value of the $\underline{\lim} u_n$ and $\overline{\lim} u_n$ are respectively
 - (i) 3 and 4
 - (ii) 4 and -5
 - (iii) -5 and 4
 - (iv) 4 and 3
 - (c) A positive term series $\sum \frac{1}{n^p}$ is convergent if and only if
 - (i) $p > 1$
 - (ii) $p = 1$
 - (iii) $p < 1$
 - (iv) $p \geq 1$
2. Write very short answer for each of the following questions: $1 \times 6 = 6$
 - (a) State the order completeness property in \mathbf{R} .
 - (b) Define limit point of a given set S of real numbers.
 - (c) Is arbitrary intersection of open sets necessarily open? Give an example.
 - (d) Find the set of limit points of the sequence
$$\{a_n\} = \sin \frac{n\pi}{3}, n \in \mathbb{N}.$$
 - (e) "Every bounded sequence has a limit point" the converse of the statement is not always true. Give an example.
 - (f) Define conditionally convergent series.

3. Write short answer for each of the following questions: 3×5=15

(a) Find the infimum and supremum of the set $\left\{ \frac{(-1)^n}{n}, n \in N \right\}$. Which of these belongs to the set?

(b) Show that every open interval is an open set.

(c) Show that the sequence $\{S_n\}$, where

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, n \in N$$

cannot converges.

(d) Show that the series $\frac{1.2}{3^2 \cdot 4^2} + \frac{3.4}{5^2 \cdot 6^2} + \frac{5.6}{7^2 \cdot 8^2} + \dots$ is convergent.

(e) Prove that every absolutely convergent series is convergent.

4. Write answer for each of the following questions: 4×5=20

(a) Prove that intersection of arbitrary collection of closed set is a closed set but (by suitable example) arbitrary union of closed set need not be closed.

(b) Define subsequence of a sequence. Show that every subsequence of a convergent sequence converges to the same limit.

(c) Show that the sequence $\{u_n\}$, where

$$u_n = \frac{2}{n+n} + \frac{2}{n+(n-1)} + \dots + \frac{2}{n+2} + \frac{2}{n+1}, n \in N$$

is convergent.

(d) Show that the series $1 + r + r^2 + r^3 + \dots$ (i) converges if $r < 1$ and (ii) diverges if $r \geq 1$.

(e) Discuss the nature of the series

$$\sum \frac{(n+1)^n x^n}{x^{n+1}}.$$

5. (a) State and prove Bolzano Weierstrass theorem for set. 6

(b) Prove that every open cover of the closed and bounded interval $[a, b]$ admits of a finite subcover. 6

Or

Prove that a set is closed if and only if its complement is open. 6

6. (a) Show that a necessary and sufficient condition for the convergence of a sequence $\{S_n\}$ is that, for each $\epsilon > 0$ there exists a positive integer m such that

$$|S_{n+p} - S_n| < \epsilon, \forall n \geq m \text{ and } p \geq 1. \quad 6$$

(b) If $\{S_n\}$ is a sequence, such that

$$S_{n+1} = \sqrt{\frac{ab^2 + S_n^2}{a+1}}, b > a, \forall n \geq 1 \text{ and } S_1 = a > 0$$

then show that the sequence $\{S_n\}$ is an increasing bounded above sequence and $\lim_{n \rightarrow \infty} S_n = b$. 6

Or

State and prove nested interval theorem. 6

7. (a) State and prove Leibnitz test for alternating series. 6

(b) Test for convergence the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots$ 6

Or

Examine the convergence of the series $\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \dots$ 6
